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Abstract: DNA Microarray technology is a very useful area in bioinformatics research. Microarray gene expression data 
allow us to quantitatively and simultaneously monitor the expression of thousands of genes under different conditions. 
Denoising is one of the major pre-processing steps in microarray image analysis. This paper presents a new spatial domain 
technique for denoising a DNA microarray image. The proposed method uses Markov Random Field model to reduce the 
noise in the microarray image. The probability mass function for the Markov Random Field uses Quadratic Energy Function. 
Maximum-a-Posteriori method is used to estimate the noiseless pixel values followed by Quasi-Newton method to solve the 
unconstrained non-linear optimization problem. Experimental results and analysis illustrate the performance of the proposed 
method with contemporary methods. 
 
Keywords: Markov Random Field, Microarray image denoising, Energy function, Non-linear Optimization, Minimum mean 
square error. 
 
Introduction 
Microarray is the robotic placement of thousands of cDNAs on a glass microscope slide. It is capable of profiling gene 
expression patterns of tens of thousands of genes simultaneously. Microarrays containing sequence representatives of all 
human genes may soon permit the gene expression analysis of the entire human genome in a single experiment, and this will 
provide unprecedented access to key areas of human health, including disease prognosis and diagnosis, drug discovery, 
toxicology, aging, and mental illness.Thus,microarray technology is rapidly become a standard platform for functional 
genomics [1]. 
The processing of microarray images [2], usually consists of the following steps: (i) gridding and spot finding, which is the 
process of assigning the location of each spot in the image, (ii) segmentation, which is the process of grouping the pixels with 
similar features (this step results in the separation of foreground and background pixels), (iii) intensity extraction, which 
calculates red and green foreground intensity pairs and background intensities. 
Noise is inherent in a microarray image because of the very nature of its acquisition. The complex bio-chemical and optical 
processes involved in the microarray preparation generate substantial amount of noise [3]. The presence of noise in a 
microarray image will affect subsequent stages of image analysis and finally affects gene expression profile. Therefore, 
removal/reduction of the noise is an important prerequisite for further processing. 
Several methods have been proposed for eliminating and reducing the noise [4], [5] in a microarray image. Two popular 
techniques are the transform domain approach and the spatial filtering. In the former case, the images are transformed using 
Fourier or Wavelet transformations and then processed for noise reduction and then inverse transformed to get back the 
denoised images. In the spatial filtering methods, linear and nonlinear filters are used to reduce the noise. In this paper 
Markov Random Field (MRF) approach is used to denoise a so that, the first stage of microarray image analysis, gridding 
becomes easier. 
 
Review of Recent Literature 
The literature survey carried out shows that a numerous researches have been proposed by researchers for Denoising the 
microarray images. In this section, a brief review of some important contributions from the existing literature is presented. 
X. H. Wang et al., [6] have proposed a new approach using wavelet theory to provide an denoising approach for eliminating 
noise source and ensure better gene expression. Denoising method uses stationary wavelet transform to preprocess the 
microarray images for removing the random noises. R. Lukac et al., [7] have proposed a new vector fuzzy filtering 
framework to denoise cDNA microarray images. This method adaptively determines weights in the filtering structure and 
provides different filter structures. Bogdan Smolka et al., [8] proposes a new method of noise reduction, which is capable of 
removing impulse and Gaussian noises, while preserving and even denoising the sharpness of the image edges. Hara 
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Stefanou et al., [9] have used a two stage approach for noise removal that processes the additive and the multiplicative noise 
component that decomposes the signal by a multiresolution transfom. Guifang Shao et al., [10] have developed a new 
algorithm which includes two parts: edge noise reduction and highly fluorescence noise reduction for noise reduction. J K 
meher et al., [11] explained noise reduction from microarray image and reduction of error during quantification process for 
estimating microarray spots accurately by preprocessing techniques such as optimize spatial resolution (OSR) and spatial 
domain filtering (SDF) to determine expression level of genes. Mario Mastriani et al., [12] described a Noise removal 
technique using smoothening of coefficients of highest sub bands in wavelet domain. N. Plataniotis et al., [13] have proposed 
a Denosing switching scheme based on the impulse detection mechanism using peer group concept. 
 
Markov Random Field Model for an Image 
Markov Random Field (MRF) is an environment where the probability distribution of a random variable at a point (node) 
depends only on its immediate neighbors [14]. MRF methods take into account the existence of spatial correlations in the 
present context. 
Consider the pixel location (i, j) of an image as shown in Fig.1, with i representing the row and j representing the column.Let 
the pixel value at (i, j) be represented by the random variable X(i, j). When image intensities are expressed using 8-bit 
unsigned integers, the range of the pixel values are from 0 to 255. Therefore, X(i, j) can take any integer value in the range { 
0 : 255}. Thus X(i, j) is a discrete integer random variable.  Let x(i, j) be one of the specific value in the set {0 :255}. Then 
the probability of X(i, j) equal to x(i, j)is represented as p(X(i, j) = x(i, j)) or simply p(x(i, j)). Now consider the conditional 
probability,  
 
p(X(i, j) =x(i, j)/X(k,m)=x(k, m)) for k≠i and j≠m. 
 
Let the 8-way neighborhood of (i, j) be as shown in grey color in the lattice diagram of Fig. 1. The neighborhood set of (i, j) 
is represented by N(i, j) and is given by, 
 
N(i, j) = {(i − 1, j− 1), (i − 1, j), (i − 1, j + 1), (i, j− 1)(i, j + 1), (i + 1, j − 1), (i + 1, j), (i + 1, j + 1)}                              (1)     
 
By definition, the random variable X(i, j) forms an MRF if, 
p(X(i, j) = x(i, j) / X(k,m) = x(k, m)) for k≠i and j≠m, is equivalent to, 
p(X(i, j) = x(i, j) / X(k,m) = x(k, m)) for (k, m) ∈ N(i, j). 
This means, the probability value at location (point) (i, j) depends only on the pixel values of its immediate neighbors. 
 
Probability mass function for MRF 
According to, the Hamersley-Clifford theorem [15], the probability mass function for an MRF is given by the Gibbs 
distribution [16] as, 

																																																																p x(i, j) = ∗ exp −E x(i, j) 		                               (2) 

Here, E is the Gibbs energy function and Z is the partition function. Z is chosen such that, 

			 p x(i, j)
( , )∈{ : }

= 1 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Immediate neighbors of (i, j), shown in grey color 

(i−2, j−2) (i−2, j−1) (i−2, j) (i−2, j+1) (i−2, j+2) 

(i−1, j−2) (i−1, j−1) (i−1, j) (i−1, j+1) (i−1, j+2) 

(i, j−2) (i, j−1) (i, j) (i, j+1) (i, j+2) 

(i+1, j−2) (i+1, j−1) (i+1, j) (i+1, j+1) (i+1, j+2) 

(i+2, j−2) (i+2, j−1) (i+2, j) (i+2, j+1) (i+2, j+2) 



178  Second International Joint Colloquiums on Computer Electronics Electrical Mechanical and Civil - CEMC 2016 
 
In general the energy function can be constructed in several ways. 
 
Quadratic Energy function: In the case of image analysis, the quadratic format for E(x(i, j)) is popular [17]. It is computed as, 

 
E(x(i, j)) 	= (x(i, j)− a(i, j))2 + c1 ∗ ∑ x(i, j)− a(e, f)( , )∈ ( , ) + c2 ∗ ∑ x(i, j) − a(g, h)( , )∈ ( , ) 							                 (3) 

 
Here,  a(i, j) is the present pixel value at (i, j) of a given image. The set HV(i, j) represents the indices  of the horizontal and 
vertical neighbors of (i, j) as shown in Fig.2.Indices (e, f)’s are shown in grey in Fig.2. The set D(i, j) represents the diagonal 
neighbors of (i, j) as shown in Fig.3. Indices (g, h)’s are shown in grey in Fig. 3. Parameters c1and c2 provide the weights for 
the respective terms of Eq.(3). The values of c1 and c2 are chosen properly for the best performance. 
 
Denoising using MRF model 
Let us consider a noisy image whose observed pixel value at location (i, j) is given by a(i, j) as, 
																																																																					a(i, j) = x(i, j) + n(i, j)															                                                                                    (4)                                                                                                                          
where, x(i, j) is the original noiseless pixel value and n(i, j) is the additive random noise. Our aim is to recover the value of 
x(i, j) from the known values of a(i, j)’s.   
Maximum-a-Posteriori (MAP) Estimation of x(i, j) 
In the MRF model under consideration, p(x(i, j)) is given by Eq. (2).According to the principle of MAP, the best estimate of 
x(i, j) is one which maximizes p(x(i, j)). That means, the best estimate of x(i, j) represented by b(i, j) is, 
 																																																																		b(i, j) = arg max ( , ) p x(i, j) 										                                                            (5) 
From Eqs.(2) and (5), we see that maximizing p(x(i, j)) is same as minimizing the energy function E(x(i, j)) over x(i, j). 
Therefore b(i, j) can be expressed as, 
 
																																																																																		b(i, j) = arg	min	 ( , ) E x(i, j) 														                                                                  (6) 
where E(x(i, j)) is given by Eq. (3).  
Our objective is to find that (x(i, j) which minimizes E(x(i, j)) given by Eq. (3). 
 

 (i−1, j)  

(i, j−1) (i, j) (i, j+1) 

 (i+1, j)  

 
Figure 2. HV(i, j), Horizontal and Vertical neighbors of (i, j) 

 

(i−1, j−1)  (i−1, j+1) 

 (i, j)  

(i+1, j−1)  (i+1, j+1) 

 
Figure  3.D(i, j), Diagonal neighbors of (i, j) 

 
Minimization of energy function in quadratic form 
The quadratic energy function E(x(i, j)) is minimized by differentiating it with respect to x(i, j) and equating the derivative to 
zero. From Eq. (3), the derivative is obtained as, 
 

( , )
( , ) = 2 ∗ x(i, j) − a(i, j) 	+ 2 ∗ 	c1 ∗ ∑ x(i, j) − a(e, f)( , )∈ ( , ) 	+ 2 ∗ 	c2 ∗ ∑ x(i, j) − a(g, h)( , )∈ ( , ) 		             (7) 

The value of x(i, j) that minimizes E(x(i, j)) is obtained by equating the RHS of Eq. (7) to zero. After cancelling 2, throughout 
and expanding the summations, we get, 
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x(i, j)− a(i, j) +c1 ∗ ( x(i, j)− a(i− 1, j) + (x(i, j)− a(i, j − 1))     + x(i, j) − a(i, j + 1) + (x(i, j) − a(i + 1, j)))  +c2 ∗

x(i, j)− a(i− 1, j− 1) + x(i, j)− a(i− 1, j + 	1) + 		x(i, j)− a(i + 1, j − 1) + (x(i, j) − a(i + 1, j + 1))) = 0     
                                                                                                                                                                                       (8) 

On solving Eq. (8) for x(i, j), we get, 

x(i, j) = b(i, j) =
a(i, j) + c1 ∗ t1 + c2 ∗ t2

1 + 4 ∗ c1 + 4 ∗ c2 								 

                        (9) 
 
Here, 
t1 = a(i − 1, j) + a(i, j + 1) + a(i, j + 1) + a(i + 1, j)                    (10) 
t2 = a(i − 1, j− 1) + a(i− 1, j + 1) + a(i + 1, j − 1) + a(i + 1, j + 1)                              (11) 
                    
t1  gives the sum of the horizontally and vertically adjacent pixels whereas t2 gives the sum of diagonally adjacent pixels. The 
values of b(i, j)’s, obtained according to Eq. (9) for all values of (i, j)’s constitute the denoised image. The denoising of a 
microarray image, using the MRF model, is given below. 
 
Denoising Using MRF (DUMRF) Algorithm. 
 Input: Noisy spot of the given microarray image. 
 Output: Denoised spot of the microarray image. 

1. Read the given image.  
Get the size (M, N) where M is the number of rows and N is the number of columns of the image matrix A. 
Store the pixels in a(i, j)’s. (for i=1to M and j= 1 to N). 

2.  Select suitable values for c1 and c2. 
3. Get b(i, j)’s for all i’s and j’s using Eqs. (9), (10) and (11). 
4. Matrix B of b(i, j)’s gives the denoised image. 
5. Exit. 

 
Best estimation of parameters c1 and c2. 
The denoising performance of our MRF method depends on the correct choice of c1 and c2 which are used in Eq. (9). 
Therefore, we select c1 and c2 such that the denoised image obtained using Eq. (9) results in minimum denoising error. 
Let us consider a noiseless (clean) image Q of size (MxN), whose elements are q(i, j)’s. To this, we add a known synthetic 
noise. The noise added could be Gaussian, Poisson, Salt and Pepper so on with appropriate noise parameters like mean, 
variance etc. Let the noise image be G, whose elements are g(i, j)’s. The resulting noisy image be designated by A whose 
elements are a(i, j)’s. Then we have, 
                                                         A = Q + G                                                                                                                       (12) 
Now, Denoising Using MRF (DUMRF) Algorithm is used to denoise A using Eq. (9), with c1 and c2 as decision variables. 
Then, we solve for c1 and c2 using Determination of Optimum values (DOV) algorithm for minimum denoising error. Thus, 
getting correct c1 and c2 is to solve an optimization problem. 
Once c1 and c2 are obtained by using a known noise source G and a known pure image Q, as in Eq. (12), we assume the same 
c1 and c2 values can be used to denoise other similar images with unknown noises.  
1)  Mean Square Error in image denoising: Let the denoised image corresponding to A in Eq. (11) be B whose elements are 
b(i, j)’s. Then the Mean Square Error (MSE) is defined as, 
                                    
      MSE =

∗
∗ ∑ ∑ b(i, j) − q(i, j) 						                                                                                            (13)                                                                                              

 
When B is exactly equal to P, the denoising is perfect and the MSE is zero. A low value of MSE indicates that the denoised 
image B is close to the noiseless image P. In Eq. (13), b(i,j) is a non-linear function of c1 and c2.Therefore MSE given by Eq. 
(13) is a non-linear function of c1 and c2. Our objective is to determine c1 and c2 to minimize the objective function MSE, 
using non-linear optimization.  

 
Non-linear optimization 
When the objective function to be minimized (or maximized) is a non-linear function of decision variables, then we call it as 
the non-linear optimization or non-linear programming. In our case, the objective function is MSE as given by Eq. (13), 
which is a non-linear function of b(i, j)’s which in turn depend on c1 and c2. Therefore determination of optimum values, c1 
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and c2 to minimize the MSE forms a non-linear optimization problem. Since there are no explicit constraints in solving for c1 
and c2, this is an unconstrained non-linear optimization problem. 
Several techniques are available to solve the unconstrained non-linear optimization problem [18-20]. A few popular 
algorithms are, Quasi-Newton [21], Nelder-Mead [22-23] and Trust-region [24].  
In this paper, we use the Quasi-Newton method for solving the non-linear optimization problem using the function 
fminunc(…) [25 ]from Matlab. 

Use of fminunc(…) 
In using fminunc(…). The decision variables c1 and c2 are represented in the vector form c as, 

                          푐 = [푐1, 푐2]                                           (14)                                                                                                                         
fminunc(…) is basically an iterative method. Therefore we have to supply the initial guess values of c1 and c2. In this case 
we have taken the initial values as, 
                                푐0 = [0.0,0.0]                                                  (15)  
The pure image Q and the noisy image A are given as the input parameters to calculate the MSE.The optimal output values of 
c and MSEopt are obtained as, 

[c, MSEopt] = fminunc(@(c)get_mse(c,Q,A),c0,options)               (16) 

The options[25] selected as  
options = optimoptions(@fminunc, 'Algorithm', 'quasi- newton', 'Display', 'iter', 'PlotFcns' , @optimplotfval)                                      
                           (17) 
Algorithm (DOV) describes the use of fminunc(…). 

Determination of Optimum Values (DOV) Algorithm. 
Input : Noiseless image Q, Suitable synthetic Noise matrix G. 
Outputs: Best values of c1 and c2. 

1. Select a suitable synthetic noise matrix G (Gaussian, Salt & Pepper, Poisson and speckle.). 
2. Add G to Q to get A as, A = Q +G. 
3. Take vector c as, c =[c1, c2]. 
4. Take initial guess value c0 = [0.0, 0.0]. 
5. Create the function get_mse(c, Q, A) which gives the MSE value according to Eqs. (13) and (9). 
6. Set the options as specified by Eq. (17). 
7. Execute the Matlab function fminunc(…)as given by Eq. (16). 
8. Output is ready in vector c = [c1, c2]. 
9. Over. 
 
Experiments and Analysis 
Example 1: Here, we use the Gaussian noise. A sample microarray spot of size 20x20 is taken and is converted to a gray 
scale image Q. A zero mean, 0.01 variance, Gaussian noise G is added using immnoise [26] function to get A. Noiseless 
image Q and its noisy version A are shown in Fig. 4a  and Fig. 4b. The vertical color bar next indicates the magnitude 
levels of the grayscale.  
Converging values of c1, c2 and MSE, from Algorithm DOV, in successive iterations, are shown in Table 1. The final c1 and 
c2 values are, c1 = 0.1328 and c2 = 0.0387 at iteration 7. 
  
 
 
 
 

 

 

                                                 
(a)Noiseless image                                  (b) Noisy Image 

 
Figure  4. Noiseless and noisy microarray spot image 
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Table 1. Converging values of c1, c2 and MSE 
 

Iterations C1 C2 MSE 
0  (at start) 0 0 535.7950 

1 0.3179 0.3263 471.7889 
2 0.2051 0.0502 329.7417 
3 0.1863 0.0096 321.1292 
4 0.1773 0.0390 316.9089 
6 0.1345 0.0387 316.9086 
7 0.1328 0.0387 316.9086 
8 0.1328 0.0387 316.9086 
9 0.1328 0.0387 316.9086 

 
The MSE values in the neighborhood of optimum values of c1 and c2 are plotted and shown in Fig. 5. In Fig. 5, we can see 
the variation of MSE as c1 and c2 are varied around their optimal values. The denoised  image of Fig. 4b, using the optimal 
values of c1 and c2, is shown in Fig. 6. 
 

 

 
 
 
 
 
 
 

 

 

 
 
 

Figure 5. Variation of MSE with c1 and c2 

 
 

 

 

 

 

 

 

 
 

Figure 6. Denoised image using c1=0.1328 and c2=0.0387.   MSE=316.9086 
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Example 2: Another sample spot from the microarray image set is taken and denoised using c1=0.1328 and c2=0.0387. The 
given image is assumed to be a degraded and a noisy image. The effect of denoising is shown in Fig. 7. The degree of 
difference between the noisy image and the denoised image is measured using the MSE between them and is found to be 
85.4174.  
 
Denoising performance of the proposed MRF method on different types of noises 
The proposed method of denoising is applied to a noiseless sample spot from the microarray image after adding the following 
types of synthetic noises with default parameters. 

1. Gaussian Noise. 
2. Salt and Pepper Noise. 
3. Poisson Noise. 
4. Speckle Noise. 
In all the cases, the percentage reduction in the noise level is expressed as, 
 

																																Per = ∗ 	– 	 								                                                                            (18) 
 
Where, MSE1 = Mean Square Error without denoising. 

                MSE2 = Mean Square Error with MRF denoising. 
The calculated results are shown in Table 2. 

                                                          
Table 2. Percentage Reduction for different types of noises 

 

Type of 
Noise 

Gaussian 

Noise 

Salt & pepper 

Noise 

Poisson 

Noise 

Speckle 

Noise 

Per_red 40.85 32.64 16.69 26.48 

 
From the result of Table 2, we see that proposed method is better suited for Gaussian noise, compared to other types. 
 
Comparison with other methods 
Example 3:Gaussian noise with different values of variance are added to a noiseless microarray spot and the resulting noisy 
images are denoised using the proposed (DUMRF)  method and four other standard denoising methods. The methods are,  

1. Denoising using MRF with c1= 0.1328 and c2 = 0.0387. 
2. Denoising using averaging filter [27] of size 3x3. 
3. Denoising using SureShrinkwavelet filter [28]. 
4. Denoising using Soft-thresholding wavelet filter [29]. 
5. Denoising using SUSAN filters [30]. 

The successive rows in Table 3 correspond to the increasing values of the noise level in terms of the variance. 
 
 
 
 
 

Figure 7. Noisy spot image and its denoised image 



Denoising of Microarray Images using the Markov Random Field Model in the Spatial Domain  183 
 

Table 3. MSE values for different methods 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 8. Variation of Mean Square Error with noise level 
 
From Table 3, we see that proposed method produces promising results compared to other standard methods. The bar graph 
corresponding to the values of Table 3 is shown in Fig. 8. 
 
Conclusion 
A new method of denoising microarray spots using MRF is presented. This paper presents two algorithms. In DUMRF 
Algorithm, Maximum-a-posteriori method is used to estimate the noiseless pixel value. The DOV Algorithm uses non-linear 
optimization technique to get relevant parameters for DUMRF Algorithm. Experimental results and analysis shows proposed 
method produces promising results compared to other standard denoising method. This work can be used as efficient pre-
processing method in microarray image analysis for accurate gene expression profiling. 
 
References 
[1] Y. F. Leung and D. Cavalieri, “Fundamentals of cdna   microarray data analysis, “Trends Genet., vol. 19, no. 11, pp. 649–659, 2003. 
[2] Y.H. Yang., M.I. Buckley, S. Dudoit, and T.P. Speed, “Comparison of methods for image analysis on cDNA microarray data,” in 

J.Computational and Graphical Stat, vol. 11, no. 1, pp. 108-136, 2002. 
[3] Mastrogianni Aikaterini, Dermatas Evangelos and Bezerianos Anastasios, "Robust pre-processing and noise reduction in microarray 

images", Proceedings of the fifth  International Conference: biomedical engineering, pp.360-364, 2007. 
[4] B. Smolka, R. Lukac, K.N. Plataniotis, "Fast noise reduction in cDNA microarray images", 23rd Biennial Symposium on 

Communications, pp. 348-351, 2006. 
[5] Ji Zhen, Li Huihui, Li Qi, et al, "A Novel Mathematical Morphology Filter and Its Performance Analysis in Noise Reduction", Journal 

Electronics, pp.68-72, 2005. 
[6] X. H.Wang, R. S. H. Istepanian, and Y. H. Song. “Microarray image enhancement by denoising using stationary wavelet 

transforms”.IEEE Transactions Nanobiosciene , pp. 184 – 189, 2003. 
[7] Rastislav Lukac and Bogdan Smolka, “Application of the adaptive center weighted vector median framework for the enhancement of 

cDNA microarray images”, International Journal of applied mathematics and Computer Science (amcs), Vol. 13, No. 3,pp. 369–383, 
2003. 

Noise 
level 

(variance) 

MSE1 
Method1 

(DUMRF) 

MSE2 
Method2 

 

MSE3 
Method3 

 

MSE4 
Method4 

 

MSE4 
Method5 

 
0.001 308.0 462.1 501.7 311.4 327.1 
0.002 347.0 464.0 548.0 413.4 416.4 
0.003 361.0 458.6 531.7 487.0 506.8 
0.004 394.5 476.2 515.1 494.3 646.4 
0.005 399.2 486.6     574.0      552.0     768.9 
0.006 393.9 498.5 510.3 547.5 710.4 
0.007 446.9 495.9 536.6 612.5 850.2 
0.008 433.4 505.5 541.6 604.2 1015.0 
0.009 470.2 505.6 563.8 556.4 954.3 
0.010 494.3 523.7 585.2 649.3 1062.5 



184  Second International Joint Colloquiums on Computer Electronics Electrical Mechanical and Civil - CEMC 2016 
 
[8] Rastislav Lukaca, Konstantinos N. Plataniotis, Bogdan Smolka and Anastasios N.Venetsanopoulos, “ cDNA microarray image 

processing using fuzzy vector filtering frame work”, Fuzzy Sets and Systems ,ELSEVIER, pp. 17-35, 2005. 
[9] Hara Stefanou, Thanasis Margaritis, Dimitri Kafetzopoulos,Konstantinos Marias and Panagiotis Tsakalides, “Microarray image 

denoising using a two- stage multiresolution technique”, IEEE International Conference on Bioinformatics and Biomedicine , pp. 383-
389, 2007. 

[10] Guifang Shao, Hong Mi, Qifeng Zhou and Linkai Luo, “ Noise estimation and reduction in microarray images “, IEEE, World 
Congress on Computer Science and Information Engineering, pp.564-568, 2009. 

[11] Meher, J.K., P.K. Meher and G.N. Dash, “Preprocessing of microarray by integrated OSR and SDF approach for effective denoising 
and quantification”, IPCSIT, pp 158-163, 2011. 

[12] Mario Mastriani, and Alberto E.Giraldez, “Microarray denoising via smoothing of coefficients in wavelet domain”, international 
journal of biological, biomedical and medical sciences, pp. 7-14, 2005. 

[13] B. Smolka, R. Lukac, K.N. Plataniotis, “Fast noise reduction in cDNA microarray images”, IEEE, 23rd Biennial Symposium on 
Communications, pp. 348-351, 2006. 

[14] Ross Kindermann and J. Laurie Snell.“Markov Random Fields and Applications,” (Contemporary Mathematics v.1) American 
mathematical society, Providence, Rhode Island. 

[15] S. Cheung, Proof of Hammersley–Clifford Theorem, Technical Report, Technical Report, 2008. 
[16] Bouman, C.A. & Shapiro, M. (1994) A Multiscale Random Field Model for Bayesian Image Segmentation.IEEE Trans. Image 

Proc,pp. 162-167. 
[17] A. Bouman, “Markov random fields and stochastic image models,” in IEEE Int. Conf. Image Processing Tutorial, Oct. 1995. 
[18] Rafael C. Gonzalez and Richard E.Woods, “Digital Image Processing”, Third Edition, PHI Learning Private Ltd., 2008. 
[19] Swann, W. H. ScienceDirect, “A Survey on Nonlinear Optimization Techniques”, FEBS Letters, vol 2, supplement 1,  pp. 39-55, 

1969. 
[20] A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods for nonlinear optimization”, SIAM Review 44,pp.  525–597, 2002  
[21] Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function Minimization," Mathematics of Computing, Vol. 24, pp. 647-

656, 1970. 
[22] Nelder, J. A., and Mead, R., "A simplex method for function minimization," The Computer Journal, vol. 7, pp. 308-313, 1965. 
[23] Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E., "Convergence properties of the Nelder-Mead simplex method in low 

dimensions," SIAM Journal on Optimization, vol. 9, pp. 112- 147, 1998. 
[24] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds", SIAM, Journal on 

Optimization, Vol. 6, pp.  418-445, 1996. 
[25] www.mathworks.com/help/optim/ug/fminunc.html. 
[26] www.mathworks.com/help/images/ref/imnoise.html  
[27] Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing”, Third Edition, PHI Learning PrivateLtd., 2008. 
[28] David L. Donoho and Iain M. Johnstone. “Adapting to unknown smoothness via wavelet shrinkage”, Journal of the American 

Statistical Association, pages 1200–1224, 1995. 
[29] Donoho, D.L.  "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613–627. 1995. 
[30] S.M. Smith, J.M. Brady, SUSAN—a new approach to low level image processing, International Journal of Computer Vision 23, pp. 

45–78, 1997. 


